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Figure 1: For each sampled path (a) we extract a radiance sample representing the incident indirect radiance. These samples consist of
position, direction, and radiance (b). When shading a pixel, we apply its BRDF also to radiance samples of neighboring pixels (weighted
by a Gaussian kernel in world-space). Reusing radiance samples reduces variance significantly without losing detail in geometry or texture.
Our algorithm can provide reliable previews of global illumination with only a few samples per pixel (c+ d).

1 Introduction

We present a method for noise reduction that is especially tailored
to interactive progressive path tracing (PT). The idea is to exploit
spatial coherence in the image and reuse information from neigh-
boring pixels. However, in contrast to image filtering techniques
(e.g. [Schwenk et al. 2012]), we do not simply filter pixel values
or samples of outgoing radiance. Instead, we only reuse the inci-
dent indirect radiance of neighboring pixels in a radiance estimation
step with a shrinking kernel similar to stochastic progressive pho-
ton mapping (SPPM) [Hachisuka and Jensen 2009]. This novel ap-
proach significantly reduces the variance in indirect lighting with-
out blurring details in geometry or texture. In equal time compar-
isons we often achieve higher quality than previous approaches.
The primary use case of our algorithm is to provide fast, reliable
previews of global illumination. It is also consistent, retains the
conceptual simplicity of PT, is orthogonal to importance and strati-
fied sampling, and is easy to integrate into existing renderers.

2 Our Method

The algorithm is sketched in Fig.1 and described in greater detail in
the accompanying poster, which also shows some preliminary re-
sults. In this document, we will focus on the unique properties of
our method and how it compares to related work.
The basic concept of our method is to treat radiance samples of
neighboring pixels as independent realizations of the same random
variable. The variance of this variable (and thus the noise in the im-
age) can be reduced by taking a weighted average of independent
realizations (i.e. by filtering). In general neighboring samples rep-
resent different variables, so this assumption is only approximately
true and filtering means trading noise for bias. Many approaches
filter pixel values and try to limit bias by using some variant of
(cross) bilateral filtering, which reduces the influence of strongly
biasing pixels. The biggest problem of these approaches is that in
most practical situations the bilateral filter will either be too broad
and blur fine details in geometry or texture, or it will be too sharp
and will not reduce variance enough. Another problem is that the
bilateral filter does not handle sharp antialiased edges correctly, be-
cause the pixel value is a linear combination of the regions adjacent
to the edge and not present in the undiscretized signal itself. Ad-
dressing these two issues was the primary motivation for our work.
The key observation is that the unwanted portion of the variance
in the outgoing radiance is due to the incident radiance, not the
BRDF. So instead of filtering pixel values, we try to reduce vari-
ance by only averaging samples of the incident radiance Li. In the

usual notation our radiance estimate is not
L̂o(x, ωo) =

∑
j

wjfr(xj , ωi,j , ωo,j)Li(xj , ωi,j)(nj · ωi,j),

but
L̂o(x, ωo) =

∑
j

wjfr(x, ωi,j , ωo)Li(xj , ωi,j)(n · ωi,j),

where the wj are normalized weights for the samples inside the
kernel. Note that with our estimate x, n, and ωo are taken from the
current shading point, not the neighbors, which reduces blur in the
factors fr and (n·ωi,j). However, shadows and sharp glossy reflec-
tions are still blurred, as they are included in Li. Usually we only
filter indirect illumination, which is the primary source of noise
and can be expected to be reasonably smooth. Our method aver-
ages before the pixel reconstruction filter is applied, so we handle
antialiased pixels correctly, which is another advantage over image
filtering. A disadvantage is the slightly higher overhead due to re-
peated BRDF evaluations.
The main difference to SPPM is that we distribute radiance samples
in image-space during PT, not by a separate photon tracing path.
The advantage is that we can expect a sample density of 1 sample
per pixel and can adapt the kernel to aim to collect as many sam-
ples as needed to reach a user-defined threshold on variance. The
assumption that neighboring pixels contain relevant radiance sam-
ples breaks down in the presence of geometric edges and complex
perfect specular objects, but in most practical cases there will be at
least some spatial coherence in the image. Early in the rendering
process kernel sizes will be relatively large and will produce the
typical artifacts known from PM (e.g. light leaks). However, as the
path traced image converges, the variance will decrease and even-
tually the image-space size of the kernel will drop below the pixel
size, at which point our algorithm reduces to standard PT (the sum
will only include the sample for the current pixel). This makes our
algorithm consistent. A disadvantage in comparison with SPPM is
that we inherit the weaknesses of PT with respect to SDS paths,
where PM is clearly the superior algorithm.
What was presented here is still work in progress. With future work
we plan to improve the performance with complex perfect specular
objects. We also want to evaluate our algorithm with bidirectional
path tracing, metropolis light transport, depth of field, and motion
blur. The last two effects are a further weakness of image filtering.
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